Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoluminescence of n-InN with low electron concentrations

Identifieur interne : 000301 ( Russie/Analysis ); précédent : 000300; suivant : 000302

Photoluminescence of n-InN with low electron concentrations

Auteurs : RBID : Pascal:06-0079403

Descripteurs français

English descriptors

Abstract

Photoluminescence (PL) of n-InN grown by molecular beam epitaxy with Hall concentrations from 3.6 x 1017to 1.0 x 1018 cm-3 demonstrates new features as compared with that of the samples of previous generation which are characterized by a higher carrier concentration. The striking dependences of PL spectra on carrier concentration, temperature, and excitation density give evidences of a fast energy relaxation rate of photoholes and their equilibrium distribution over localized states. The well resolved structure consisting of three peaks was observed in the PL spectra of these samples in the energy interval from 0.50 to 0.67 eV at liquid helium and nitrogen temperatures. We attributed one of two low-energy features of the spectra to the recombination of degenerate electrons with the holes trapped by deep acceptors with a binding energy of Eda = 0.050-0.055 eV and the other one is attributable to the LO-phonon replica of this band. The higher-energy PL peak is considered as a complex band formed by two mechanisms. The first one is related to the transitions of electrons to the states of shallow acceptors with a binding energy of Esh = 0.005-0.010 eV and/or to the states of Urbach tail populated by photoholes. The second mechanism contributing to this band is the band-to-band recombination of free holes and electrons. Relative intensities of two higher-energy PL peaks were found to be strongly dependent on temperature and excitation power. At room temperature, the band-to-band recombination of free holes and electrons dominates in PL. Experimental results on PL and absorption are described by the model calculations under the assumptions of the band gap equal to 0.665-0.670 eV at zero temperature and zero carrier concentration and the non-parabolic conduction band with the effective mass at Γ-point equal to 0.07 of free electron mass.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0079403

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoluminescence of n-InN with low electron concentrations</title>
<author>
<name sortKey="Klochikhin, Albert" uniqKey="Klochikhin A">Albert Klochikhin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Petersburg Nuclear Physics Institute</s1>
<s2>188350, St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Petersburg Nuclear Physics Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Davydov, Valery" uniqKey="Davydov V">Valery Davydov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Emtsev, Vadim" uniqKey="Emtsev V">Vadim Emtsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakharov, Alexey" uniqKey="Sakharov A">Alexey Sakharov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kapitonov, Vladimir" uniqKey="Kapitonov V">Vladimir Kapitonov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>A. F. Ioffe Physico-Technical Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andreev, Boris" uniqKey="Andreev B">Boris Andreev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute for Physics of Microstructures RAS, GSP-105</s1>
<s2>603950 Nizhny Novgorod</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>603950 Nizhny Novgorod</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAI LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Electrical and Computer Engineering, Comell University</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ithaca, New York 14853</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schaff, William J" uniqKey="Schaff W">William J. Schaff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Electrical and Computer Engineering, Comell University</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ithaca, New York 14853</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0079403</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0079403 INIST</idno>
<idno type="RBID">Pascal:06-0079403</idno>
<idno type="wicri:Area/Main/Corpus">009496</idno>
<idno type="wicri:Area/Main/Repository">008621</idno>
<idno type="wicri:Area/Russie/Extraction">000301</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0031-8965</idno>
<title level="j" type="abbreviated">Phys. status solidi, A, Appl. res.</title>
<title level="j" type="main">Physica status solidi. A. Applied research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding energy</term>
<term>Carrier density</term>
<term>Charge carrier trapping</term>
<term>Effective mass</term>
<term>Indium nitrides</term>
<term>Localized states</term>
<term>Molecular beam epitaxy</term>
<term>Photoluminescence</term>
<term>Shallow level</term>
<term>Urbach rule</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Densité porteur charge</term>
<term>Epitaxie jet moléculaire</term>
<term>Masse effective</term>
<term>Etat localisé</term>
<term>Piégeage porteur charge</term>
<term>Energie liaison</term>
<term>Niveau peu profond</term>
<term>Règle Urbach</term>
<term>Indium nitrure</term>
<term>InN</term>
<term>7855C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photoluminescence (PL) of n-InN grown by molecular beam epitaxy with Hall concentrations from 3.6 x 10
<sup>17</sup>
to 1.0 x 10
<sup>18</sup>
cm
<sup>-3</sup>
demonstrates new features as compared with that of the samples of previous generation which are characterized by a higher carrier concentration. The striking dependences of PL spectra on carrier concentration, temperature, and excitation density give evidences of a fast energy relaxation rate of photoholes and their equilibrium distribution over localized states. The well resolved structure consisting of three peaks was observed in the PL spectra of these samples in the energy interval from 0.50 to 0.67 eV at liquid helium and nitrogen temperatures. We attributed one of two low-energy features of the spectra to the recombination of degenerate electrons with the holes trapped by deep acceptors with a binding energy of E
<sub>da</sub>
= 0.050-0.055 eV and the other one is attributable to the LO-phonon replica of this band. The higher-energy PL peak is considered as a complex band formed by two mechanisms. The first one is related to the transitions of electrons to the states of shallow acceptors with a binding energy of E
<sub>sh</sub>
= 0.005-0.010 eV and/or to the states of Urbach tail populated by photoholes. The second mechanism contributing to this band is the band-to-band recombination of free holes and electrons. Relative intensities of two higher-energy PL peaks were found to be strongly dependent on temperature and excitation power. At room temperature, the band-to-band recombination of free holes and electrons dominates in PL. Experimental results on PL and absorption are described by the model calculations under the assumptions of the band gap equal to 0.665-0.670 eV at zero temperature and zero carrier concentration and the non-parabolic conduction band with the effective mass at Γ-point equal to 0.07 of free electron mass.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0031-8965</s0>
</fA01>
<fA02 i1="01">
<s0>PSSABA</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. status solidi, A, Appl. res.</s0>
</fA03>
<fA05>
<s2>203</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoluminescence of n-InN with low electron concentrations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KLOCHIKHIN (Albert)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DAVYDOV (Valery)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EMTSEV (Vadim)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAKHAROV (Alexey)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KAPITONOV (Vladimir)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ANDREEV (Boris)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HAI LU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SCHAFF (William J.)</s1>
</fA11>
<fA14 i1="01">
<s1>A. F. Ioffe Physico-Technical Institute</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Petersburg Nuclear Physics Institute</s1>
<s2>188350, St. Petersburg</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Physics of Microstructures RAS, GSP-105</s1>
<s2>603950 Nizhny Novgorod</s2>
<s3>RUS</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Electrical and Computer Engineering, Comell University</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>50-58</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000134781940060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0079403</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A. Applied research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Photoluminescence (PL) of n-InN grown by molecular beam epitaxy with Hall concentrations from 3.6 x 10
<sup>17</sup>
to 1.0 x 10
<sup>18</sup>
cm
<sup>-3</sup>
demonstrates new features as compared with that of the samples of previous generation which are characterized by a higher carrier concentration. The striking dependences of PL spectra on carrier concentration, temperature, and excitation density give evidences of a fast energy relaxation rate of photoholes and their equilibrium distribution over localized states. The well resolved structure consisting of three peaks was observed in the PL spectra of these samples in the energy interval from 0.50 to 0.67 eV at liquid helium and nitrogen temperatures. We attributed one of two low-energy features of the spectra to the recombination of degenerate electrons with the holes trapped by deep acceptors with a binding energy of E
<sub>da</sub>
= 0.050-0.055 eV and the other one is attributable to the LO-phonon replica of this band. The higher-energy PL peak is considered as a complex band formed by two mechanisms. The first one is related to the transitions of electrons to the states of shallow acceptors with a binding energy of E
<sub>sh</sub>
= 0.005-0.010 eV and/or to the states of Urbach tail populated by photoholes. The second mechanism contributing to this band is the band-to-band recombination of free holes and electrons. Relative intensities of two higher-energy PL peaks were found to be strongly dependent on temperature and excitation power. At room temperature, the band-to-band recombination of free holes and electrons dominates in PL. Experimental results on PL and absorption are described by the model calculations under the assumptions of the band gap equal to 0.665-0.670 eV at zero temperature and zero carrier concentration and the non-parabolic conduction band with the effective mass at Γ-point equal to 0.07 of free electron mass.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Masse effective</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Effective mass</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etat localisé</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Localized states</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Energie liaison</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Binding energy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Niveau peu profond</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Shallow level</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Nivel poco profundo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Règle Urbach</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Urbach rule</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Regla Urbach</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium nitrure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium nitrides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>7855C</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>044</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>European Materials Research Society (E-MRS) Fall Meeting</s1>
<s3>Warsaw POL</s3>
<s4>2005-09-05</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000301 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000301 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:06-0079403
   |texte=   Photoluminescence of n-InN with low electron concentrations
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024